

Figure 1

Tables

Functions	Range	Resolution	Accuracy ± (a% readings + b digits)	Input Protection	Description
	4V	1mV			
DC	40V	10mV	\pm (0.8%+1)	600V DC	Input Impedance
Voltage	400V	100mV		600 V AC	\geqslant 10M Ω ;
	600V	1V	±(1%+3)		

Functions	Range	Resolution	Accuracy ±(a% readings + b digits)	Input Protection	Description
	4V	1mV			Input Impedance ≥ 10M Ω ;Frequency
AC Voltage	40V	10mV	±(1.2%+3)	600V DC	Response: 40 \(\sigma \) 400Hz; Display: RMS of Sine wave(Mean Value
ACV	400V	100mV			
	600V	1V	\pm (1.5%+5)		Response)
	400 Ω	0.1 Ω	±(1.2%+2)		
	4K Ω	1 Ω	±(1%+2)	600 V AC	Open circuit voltage is about 0.45V.
Resistance Ω	40K Ω	10 Ω			
	400K Ω	100 Ω			
	$4M\Omega$	1K Ω	±(1.2%+2)		
	40M Ω	10K Ω	±(1.5%+2)		

Tables

Functions	Range	Resolution	Accuracy ±(a% readings + b digits)	Input Protection	Description
	4.000nF	0.001nF		600 V AC	For reference
	40.00nF	0.01nF	±(4%+3) ±(5%+10)		Measured under
Capacitance CAP(F)	400.0nF	0.1nF			relative measurement,
	4.000 µ F	0.001 µ F			0.45V for open
	40.oo μ F	0.01 µ F			circuit
	100 µ F	0.1 µ F			Just for reading reference when measured capacitance above "100 µ F".

Functions	Range	Resolution	Accuracy ±(a% readings + b digits)	Input Protection	Description
Frequency	99.9Hz 0.999kHz	0. 1Hz 0.001kHz	L (0.50(± 0)		Input sine wave 10Hz~10kHz:
Hz	9.99kHz 99.9kHz	0.01kHz 0.1kHz	±(0.5%+3)	600 V AC	≥1V RMS 10kHz~100kHz: ≥30VRMS
Duty Cycle	0.1%~ 99.9%	0.10%		600 V AC	Use DUTY knob switch to shift to DUTY measurement mode when under AC/DC function (reading for reference only)
Diode		1mV	0.5V∽0.8v	600V AC	1.5 V for open circuit status

Tables

Functions	Range	Resolution	Accuracy ±(a% readings + b digits)	Input Protection	Description
Buzzer Continuity	•1))	0.1 Ω	About ≤60 Ω	600V AC	Continuity Resistance \leq 60 Ω : buzzer beeps; $>$ 60 Ω : not necessarily to beep, resistance approximate value is displayed, unit is Ω
Low Voltage Indication			About <2.4V		ffi icon appears

English	8
Svenska	19
Norsk	25
Dansk	29
Suomi	37
Deutsch	44
Netherlands	52
- rançais	60
taliano	68
Español	76
Português	
Ελληνικά	90
Polski	98
Eesti	106
_ietuviškai	113
atviski	121

Limit 210

Contents

Frequency Capacitance Battery

Overview General specification Safety information Button function Voltage DC and AC Resistance Diode testing Continuity test

Overview

This Operating Manual covers information on safety and cautions. Please read the relevant information carefully and observe all the Warnings and Notes strictly.

Limit 210 pocket sized $3\,\%$ digits multimeter with steady operations, fashionable design and highly reliable hand-held measuring instrument.

General Specifications

Measuring range and accuracy see page 2.

- Max Voltage 600 V.
- Auto ranging.
- Sleep mode. Automatic turn off if not in use for 10 minutes.
- Display 3 3/4 digits or 3999.
- · Measurement Speed: Updates 3 times /second.
- Temperature: Operating: 0°C~40°C (32°F~104°F). Storage: -10°C~50°C (14°F~122°F).
- Battery Type: One pcs 3V type CR2032.
- Safety/Compliances: IEC61010 CAT II 600V.

English

• Certification: CE

Safety Information
This Meter complies with the standards IEC61010. Isolation CAT II 600 V.

Warning

To avoid possible electric shock or personal injury, and to avoid possible damage to the Meter or to the equipment under test, adhere to the following rules:

- Before using the Meter inspect the case. Do not use the Meter if it is damaged or the case (or part of the case) is removed. Look for cracks or missing plastics. Pay attention to the insulation around the connectors
- Inspect the test leads for damages insulation or exposed metal.
- Do not apply more than the rated voltage, as marked on the Meter.
- The rotary switch should be placed in the right position and no any changeover during measurement is conducted to prevent damage of the Meter.
- When the Meter working at an effective voltage over 60V in DC or 42V in AC, special care should be taken for there is danger of electric shock.

- Do not use or store the Meter in an environment of high temperature; humidity, explosive, inflammable and strong magnetic fields. The performance of the Meter may deteriorate after dampened.
- When using the test leads, keep your fingers behind the finger guards.
- Disconnect circuit power and discharge all high-voltage capacitors before testing resistance, continuity, diodes and current.
- Replace the battery as soon as the battery indicator appears. Whit to low battery, the Meter might produce false readings that can lead to electric shock and personal injury.

Functional butto	ne

SELECT

• Change between Ω . Diodes test or Continuity test when rotary switch are selected for any of this functions.

REL A

• On/Off for relative mode in any measuring mode except frequency/duty mode. Display shows 0 and current reading is set as reference value.

HOLD Hz/%

On/Off for hold function

• Change between measuring frequency in Hz or duty cycle in % when rotary switch is in DCV or ACV position.

Note. The meter will be at max DCV 400 mV or ACV 4 V when Hz/Duty mode is on. It is important to turn off and on again to resume to auto range mode when measuring higher voltage.

Voltage measurement DC and AC (See fig 1)

- 1. Turn the rotary switch to DCV position for DC or ACV~ for AC.
- 2. Connect the test leads across with the object being measured. The measured value shows on the display.

Resistance measurement (See fig 1)

- 1. Turn the rotary switch to Ω▶» position.
- 2. Select Ω with SELECT button. Display shows resistance symbol Ω .
- 3. Connect the test leads across with the object being measured. The measured value shows on the display.

The test leads can add 0.1Ω to 0.3Ω of error to resistance measurement. To obtain precision readings in low-resistance measurement, that is the range of 400Ω , short-circuit the input terminals beforehand and record the reading obtained. This is the additional resistance from the test lead

Diode test (See fig 1)

Use the diode test to check diodes, transistors, and other semiconductor devices. The diode test sends a current through the semiconductor junction, and then measures the voltage drop across the junction. A good silicon junction drops between 0.5V and 0.8V.

- 1. Turn the rotary switch to $\Omega \triangleright$ » position.
- 2. Select Diode with SELECT button. Display shows diode symbol ▶.
- 3. Place the red test lead on the component's anode and place the black test lead on the component's cathode. The measured value shows on the display.

Continuity test (See fig 1)

- 1. Turn the rotary switch to $\Omega \triangleright$ » position.
- 2. Select Continuity with SELECT button. Display shows Continuity symbol ».
- 3. Connect the test leads across the object. The buzzer sounds if the resistance of a circuit under test is less than 60Ω .

Frequency or Duty cycle measuring (See fig 1)

- 1. Turn the rotary switch to Hz% alternative DCV or ACV position.
- 2. Push the Hz/% button for Frequency Hz or Duty cycle %.

3. Connect the test leads across with the object being measured. The measured value shows on the display.

Capacitance (See fig 1)

- 1. Turn the rotary switch to # position.
- 3. Push REL Δ button.
- 4. Connect the test leads across with the object being measured. The measured value shows on the display.

To minimize the measuring error caused by the distributed capacitor, the testing lead should be short as possible. For measuring capacitance higher than $10~\mu F$, it is normal taking several seconds to obtain a reading.

Replacing the battery (See fig 2)

- 1. Disconnect the connection between the testing leads and the circuit under test when battery indicator appears on the display.
- 2. Turn the Meter to OFF position.
- 3. Remove the screw, and separate the case bottom.
- 4. Replace the battery with a new 3V battery type CR2032.